
MA 335, Spring 2014

Assignment 7.

This homework is due Friday March 21.

There are total 36 points in this assignment. 32 points is considered 100%. If
you go over 32 points, you will get over 100% for this homework (but not over
115%) and it will count towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your
own paper and give credit to your collaborators in your pledge. Your solutions
should contain full proofs. Bare answers will not earn you much.

This assignment is longer than usual, so it is worth 3
2 as much as a regular

homework in terms of course grade.

1. Wilson’s theorem

(1) (a) [2pt] (5.3.1a) Find the remainder of 15! when divided by 17.
(b) [2pt] Find the remainder of 58! when divided by 61. (Hint: 59≡ −2 (mod 61).)

(2) [2pt] (5.3.3) Arrange the integers 2, 3, 4, . . . , 21 in pairs a, b that satisfy
ab ≡ 1 (mod 23).

(3) [2pt] (5.3.9) Using Wilson’s theorem, prove that for any odd prime p,

12 · 32 · 52 · · · (p− 2)2 ≡ (−1)(p+1)/2 (mod p).

(Hint: Using that k ≡ −(p− k) (mod p), show that

2 · 4 · 6 · · · (p− 1) ≡ (−1)(p−1)/21 · 3 · 5 · · · (p− 2) (mod p).)

(4) [3pt] (5.3.18) Prove that if p and p+ 2 are a pair of twin primes, then

4((p− 1)! + 1) + p ≡ 0 (mod p(p+ 2)).

2. Number-theoretic functions

(5) [2pt] (6.1.6) For any integer n ≥ 1, establish that τ(n) ≤ 2
√
n. (Hint: In

each pair s.t. d1d2 = n, at least one of numbers is ≤
√
n.)

(6) (6.1.7) Prove the following.
(a) [2pt] τ(n) is an odd integer if and only if n is a perfect square.
(b) [2pt] σ(n) is an odd integer if and only if n is of the form m2 or 2m2.

(Hint: If p is an odd prime, then 1 + p+ . . .+ pk is odd if and only if
k is even.)

(7) (6.1.14) For k ≥ 2, show each of the following:
(a) [1pt] n = 2k−1 satisfies the equation σ(n) = 2n− 1.
(b) [1pt] If 2k − 1 is prime, then n = 2k−1(2k − 1) satisfies the equation

σ(n) = 2n.
(c) [1pt] If 2k − 3 is prime, then n = 2k−1(2k − 3) satisfies the equation

σ(n) = 2n+ 2.
Comment. It is an open question if there are any positive integers such
that σ(n) = 2n+ 1.
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(8) [3pt] Numbers with the property σ(n) = 2n are called perfect numbers.
In other words, perfect numbers are those equal to sum of their divisors,
excluding the number itself. For example, 28 = 1 + 2 + 4 + 7 + 14. In
problem 7b we proved that numbers of the form n = 2k−1(2k − 1), with
2k−1 prime, are perfect. Prove the partial converse: if a perfect number is
even, then n has the form n = 2k−1(2k − 1), where 2k − 1 is prime. (Hint:
Represent n as 2k ·m, where m is odd. Use multiplicativity of σ.)

Comment. The statement above says nothing about odd perfect num-
bers, and there is a good reason: it is an open question whether they exist.

3. Muliplicativity

(9) [2pt] (6.1.18) Let f , g be multiplicative functions that have the property
f(pk) = g(pk) for each prime p and k ∈ Z, k ≥ 0. Prove that f = g.

(10) (6.1.20) Let ω(n) be the number of distinct prime divisors of n > 1, with
ω(1) = 0. For instance, ω(360) = ω(23 · 32 · 5) = 3.
(a) [1pt] Show that 2ω(n) is a multiplicative function.
(b) [3pt] For a positive integer n, establish the formula

τ(n2) =
∑
d|n

2ω(d).

(Hint: Argue that both LHS and RHS are multiplicative functions.
Use Problem 9.)

(11) (∼6.1.22) τ and σ are particular cases of a family of number theoretic
functions σs, s ∈ R:

σs(n) =
∑
d|n

ds,

so τ = σ0 and σ = σ1.
(a) [2pt] (6.1.8) Prove that σ−1(n) = σ(n)/n. (Hint: Multiply both sides

by n.)
(b) [1pt] (6.1.17) Show that for every fixed s ∈ R, function ns is multi-

plicative.
(c) [2pt] Prove that σs is a multiplicative function for every s ∈ R. (Hint:

Use item 11b.)

(d) [2pt] Let s ̸= 0. If n = pk1
1 pk2

2 · · · pkr
r is the prime factorization of n,

then

σs(n) =

(
p
s(k1+1)
1 − 1

ps1 − 1

)(
p
s(k2+1)
2 − 1

ps2 − 1

)
· · ·

(
p
s(kr+1)
r − 1

psr − 1

)
.

(Hint: Compute σs(n) in the case n = pk. Then use multiplicativity.)


